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Presentation Notes
When people think of best practices for data management for machine learning, they generally don’t think about a data warehouse. That’s for business intelligence, right? Machine learning needs a whole different way to manage data. But they both have to analyze data, and often a fair amount of it is the same data.
A rapid evolution in data architectures has been driven by the need to bridge the technical and spiritual gap between the needs of business intelligence and data science.




Analytics Use Cases are Everywhere
Companies that enable our data-driven world use both BI and data science.

Network Optimization Energy Optimization
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Advanced analytics like predictive, prescriptive, with methods like machine learning, deep learning touch our lives every day. Climate Corps uses machine learning to increase farmer’s crop yield, Philips to make sure MRI’s and CT scanners don’t break down. Uber optimizes routes to get you a car in under 7 minutes, while HP does AIOps, optimizes network operations. �But all of these companies still need business intelligence. The new types of analytics didn’t displace the old, they just added a whole new layer of complexity.
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This is what a data warehouse architecture looks like.
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So, let’s set the way back machine. I’ve been in the data management space for 23 years, but the data warehouse architecture predates me. In this industry that changes so rapidly, the fact that data warehouses were a solid workhorse for so long is a testament to their innate strengths. 
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Because the data warehouse has some major weaknesses.
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Uber, like many companies, was sure that the data lake was the answer, and they fully intended to pitch their analytical database, and use just the data lake from then on for both BI and data science.
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They and all the other companies who jumped on the data lake bandwagon had good reasons for it. The data lake has a lot of strengths.
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Because the data lake has some pretty important weaknesses.



Cooperative Architecture Strengths
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So, the obvious solution is the one many people came to. Combine these two architectures to get the strengths of both.
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This is what this cooperative architecture looks like in general, and this is the architecture that for the last six or seven years, I’ve seen a lot of companies using, or moving toward. It’s the holy grail architecture that has all the strengths.
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Pre-Eon mode – spark and db both used for ML, domino manages two teams, but all ML put into production in db
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A cooperative enterprise data architecture provides the strength of both, but at the expense of simplicity. This is not a simple architecture to build or maintain. And, it keeps the business intelligence team off doing one thing in SQL, while the data science team works elsewhere in tools like Python, R, and Jupyter. And it’s all about where the data is stored. You can’t do anything without figuring that out first, and getting the data you need to do BI or data science moved to where you can work on it with your favorite toolset.
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Let’s look at the cooperative architecture again, and I’ll show you how people are modifying it, to compensate for the weaknesses. 
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Storage is storage. It really doesn’t matter if you’re storing your data in the Google cloud, HDFS, or an S3 bucket. For that matter it could be on a Pure flashblade or a Scality Ring. Whatever your scalable storage of choice is, that’s where all the data is stored. File and object formats like Parquet and JSON are stored right alongside the database’s read optimized storage file format. 

And give that powerful optimized database query capability free range to query any data, whether it’s in the database format or not. Streaming in in JSON or Avro? Auto-parse it right into the database format and query it. Or, let it build up in HDFS or S3 or Google cloud storage or wherever, and use schema-on-read to query it there. Query Parquet or ORC formats in place. They’re already columnar. Add the complex data type capability to your SQL engine, and go. 



Manage Data Life Cycle with Data Formats

Cold data, 
historical data

Hot data,
fast data

ROS
ELT, 

Data Prep

Raw Data
Many 

Formats
Ingestion, ELT, 

Data Prep

ON-PREMISES, HYBRID, CLOUD OR MULTI-CLOUD

…

SQL

Batch ETL 

OR

Fast ELT

LOW LATENCY

Application data 

Web clicks

Logs

Sensors

Operational metrics 

User tracking

Geo-location

STREAMING DATA

BATCH

Files

Weather

Geo

CONTEXTUAL DATA

Application Data

OLTP/ODS

TRANSACTIONAL DATA

STREAM PROCESSING

BUSINESS 
INTELLIGENCE

DATA SCIENCE
+

Presenter
Presentation Notes
The data life cycle management that we’ve seen before, where the hot data is put into the database format, like ROS, Vertica’s storage format, and the Cold data is put into Parquet or ORC, that makes good sense.  Data in JSON or Avro is slow to query because you have to apply schema-on-read. If you need to analyze it faster, put it in the database format. So, you get a hierarchy of performance SLA’s. Semi-structured formats like JSON and Avro for long SLA’s, refined, columnar formats like Parquet and ORC for faster analytic performance, and very refined, read optimized storage for data that needs to be queried often and quickly. And the ability to use SQL to join datasets if needed, analyze any kind of data, and transform from one format to the other as needed.
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Compute is a separate thing.



Unify Analytics
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But not just SQL. You want to also be able to use Python or R, and have it distributed, so it can operate on large datasets. And you should be able to have your dev environment, your test environment and your production environment all the same, to get data science into production as soon as it’s proven. The data is all available. What format it’s in is irrelevant. Explore it, prepare it, train models, score models, and deploy models, AND analyze past trends, show current states. BI and data science are done together on the same data, not segregated with someone having to build pipelines to move the data around for the different teams, and try to keep it in sync.
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Compute workloads are spun up in sub-clusters, within the larger cluster. Each takes whatever it needs from the shared storage and cache’s it for fast querying. Each is assigned a certain amount of compute capability when it’s spun up, dedicated to that workload. Machine Learning never interferes with dashboard response. Ad hoc queries can be run with confidence concurrently with streaming data ingestion and data refinement. Concurrency across the board is improved. Hundreds of users can do things at once, without ever interfering with each other.
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And the entire machine learning life cycle can be done in place, or part of it can be done elsewhere if needed, and handed off for operationalizing here. PMML models can be trained here and exported, or trained elsewhere and imported. Tensorflow or Pytorch models trained on GPU machines can be imported and scored, and put to work here. And managed as first class citizens, just like tables in a regular database.



Unified Analytics Platform
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And you can do this on any cloud. AWS, Alibaba, Google, Azure, and not just on A cloud, on multiple clouds, or on-premises, or hybrid. On commodity hardware, on Hadoop, or specialized hardware like Pure or Scality. ��Now, you have an architecture with simplicity, flexibility, and the ability to do both BI and data science.



Unified Analytics Warehouse Strengths
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A UAW unifies your BI and data science teams, and lets everyone use their tool of choice on any data. I can use a Jupyter notebook to do a BI query if I feel like it. I can use SQL to train and deploy a regression algorithm. The UAW gets machine learning into production with full support for the entire machine learning life cycle in one environment, no rebuilding. Your analytics consumers don’t have to worry about where their data is, and data engineers don’t have to constantly build pipelines to move it around so people can analyze it. Location is entirely up to you. Sensible life cycle management and SLA requirements determine what format data is put in, and switching formats is a SQL call.
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In production a long time – pre-dates Kafka – built almost everything themselves, but data warehouse evolved, and they put it to work, machine learning with python, R in database - distributed

500 TB in >200 tables
30 trillion data points
>80 diff data sources integrate for the complete connected picture
Installed base including CRM, SAP, one factory, one repair shop
3-7 yrs of historical data
24/7 live feeds
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Spark for ELT, data prep 
workload isolation via multiple databases
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Pre-Eon mode (so no sub-clusters/workload isolation) – all data on AWS. Machine learning and BI all done in SQL.
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Aerospike in-mem db used for sub 100 ms response requirements – sometimes, they only have 20 ms to respond

Uses Eon Mode with workload isolation/sub-clusters – 2 480-node clusters for diff regions. Sub-clusters used so reporting workload isolated from other workloads, most likely to cause problems

“Most efficient database on the market.” Ron Cormier

Vertica is loading 85 TB of data per day in tab separated files GZIP compressed

Over 11 pbs of data
2 480 node clusters for diff regions globally – over 50,000 automated reports a day provided to customers. 
Data ingest and ETL/data prep constantly on single 128 node cluster left on always. 
Ad hoc BI, and in-DB ML done on ephemeral 64 node clusters



EMA Radar Report: Unified Analytics Warehouse
A Guide for Investing in Unified Analytics

Request your copy today:
https://www.vertica.com/success-ema-radar-report/



Q&A Learn More: academy.vertica.com

Try it Free: vertica.com/try

Paige Roberts
Open Source Relations Manager
E: Paige.Roberts@vertica.com
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Paige Roberts
Open Source Relations Manager
E: Paige.Roberts@vertica.com
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